Introduction to Inelastic Neutron Scattering

Bruce D Gaulin McMaster University

Brockhouse Institute for Materials Research

Neutrons: Properties and Cross Sections

Excitations in solids

Triple Axis and Chopper Techniques

Practical concerns

MCMAST

²³⁵U + n → daughter nuclei + 2-3 n + gammas

neutrons:

no charge s=1/2 massive: mc^{2~}1 GeV

How do we produce neutrons

Fission

- chain reaction
- continuous flow
- 1 neutron/fission

Spallation

- no chain reaction
- pulsed operation
- 30 neutrons/proton

Neutron interactions with

matter

- Properties of the neutron
 - Mass $m_n = 1.675 \times 10^{-27} \text{ kg}$
 - Charge 0
 - Spin-1/2, magnetic moment $\mu_n = -1.913 \mu_N$
- Neutrons interact with...
 - Nucleus
 - Crystal structure/excitations (eg. Phonons)
 - Unpaired electrons via dipole scattering
 - Magnetic structure and excitations

Nuclear scattering

NXS School Magnetic dipole scattering

Wavelength-energy relations

• Energy (E), velocity (v), wavenumber (k), wavelength (λ)

$$k = \frac{m_n v}{h} = \frac{2\pi}{\lambda}$$
$$E = \frac{h^2 k^2}{2m_n} = \frac{h^2}{2m_n} \left(\frac{2\pi}{\lambda}\right)^2 = \frac{81.81 \text{meV} \cdot \text{\AA}^2}{\lambda^2}$$
$$E = k_B T = \left(0.08617 \text{meV} \cdot \text{K}^{-1}\right) T$$

 λ ~ interatomic spacing $\rightarrow\,$ E ~ excitations in condensed matter

	Energy (meV)	Temperature (K)	Wavelength (Å)
Cold	0.1 – 10	1 – 120	4 – 30
Thermal	5 – 100	60 - 1000	1 – 4
Hot	100 – 500	1000 - 6000	0.4 – 1

Incident Beam:

- monochromatic
- "white"
- "pink"

Scattered Beam:

- Resolve its energy
- Don't resolve its energy
- Filter its energy

Fermi's Golden Rule within the 1st Born Approximation

 $\delta^2 \sigma / \delta \Omega \delta E_f = k_f / k_i \sigma_{coh} / 4\pi N S_{coh} (\mathbf{Q}, \omega)$

+ $k_f/k_i \sigma_{incoh}/4\pi$ N $S_{incoh}(\mathbf{Q}, \omega)$

Force

r

R_j(t)

Nuclear correlation functions

Pair correlation function

$$G(\mathbf{r},t) = \frac{1}{N} \int \sum_{jj'} \delta(\mathbf{r}' - \mathbf{R}_{j'}(0)) \delta(\mathbf{r}' + \mathbf{r} - \mathbf{R}_{j}(t)) d\mathbf{r}'$$

Intermediate function

$$I(\mathbf{Q},t) = \int G(\mathbf{r},t)e^{i\mathbf{Q}\cdot\mathbf{r}}d\mathbf{r} = \frac{1}{N}\sum_{jj'}\exp\left(-i\mathbf{Q}\cdot\mathbf{R}_{j'}(0)\right)\exp\left(i\mathbf{Q}\cdot\mathbf{R}_{j}(t)\right)$$

Scattering function

$$S(\mathbf{Q},\omega) = \frac{1}{2\pi\hbar} \int I(\mathbf{Q},t) e^{-i\omega t} dt$$

 $\frac{\text{Differential scattering}}{\text{cross-section}}$ $\frac{d^2\sigma}{d\Omega dE_f} = \frac{\sigma_{scat}}{4\pi} \frac{k_f}{k_i} NS(\mathbf{Q}, \omega)$

 $\mathbf{R}_{i}(0)$

Rj′(0

Nuclear (lattice) excitations

Neutron scattering measures simultaneously the wavevector and energy of **collective excitations** \rightarrow dispersion relation, $\omega(\mathbf{q})$ In addition, **local excitations** can of course be observed

• Commonly studied excitations

- Phonons
- Librations and vibrations in molecules
- Diffusion
- Collective modes in glasses and liquids

Excitations can tell us about

- Interatomic potentials & bonding
- Phase transitions & critical phenomena (soft modes)
- Fluid dynamics
- Momentum distributions & superfluids (eg. He)
- Interactions (eg. electron-phonon coupling)

Atomic diffusion

For long times compared to the collision time, atom diffuses

Auto-correlation function

$$G_{s}(r,t) = \left\{ 6\pi \left\langle r^{2}(t) \right\rangle \right\}^{-3/2} \exp \left(-\frac{r^{2}}{6 \left\langle r^{2}(t) \right\rangle} \right)$$

$$S(Q,\omega) = \frac{1}{\pi h} \exp\left(\frac{h\omega}{2k_B T}\right) \frac{DQ^2}{\omega^2 + (DQ^2)^2}$$

100 *θ* ≈20* Q=0-28 θ=60* Ω₀=0·82 60 20 $\left\{ \sigma_{\text{inc}} / \sigma_{\text{inc}} + \sigma_{\text{conf}} \right\} S(Q, \omega) (1/\beta \hbar)$ 60 θ=30* Q=0.42 20 θ=45 30 Q= 0.62 20 θ=90° 10 2-0 x 10¹² 1.0 Ô +0 2.0 -1-0 0 ω (rad s-I)

Liquid Na

Cocking, J. Phys. C 2, 2047 (1969)..

Molecular vibrations

- Large molecule, many normal modes
- Harmonic vibrations can determine interatomic potentials

C60 molecule

Prassides et al., Nature 354, 462 (1991).

Mapping Momentum – Energy (Q-E) space

Origin of reciprocal space;

Remains fixed for any sample rotation

Bragg diffraction:

Constructive Interference

Q = Reciprocal Lattice Vector

Elastic scattering : $|\mathbf{k}_i| = |\mathbf{k}_f|$

Bragg diffraction:

a

MOMENTUM, Q

Elementary Excitations in Solids

• Lattice Vibrations (Phonons)

• Spin Fluctuations (Magnons)

Energy vs Momentum

• Forces which bind atoms together in solids

Phonons

Λ

Normal modes in periodic crystal \rightarrow wavevector

$$\mathbf{u}(l,t) = \frac{1}{\sqrt{NM}} \sum_{j\mathbf{q}} \boldsymbol{\varepsilon}_{j}(\mathbf{q}) \exp(i\mathbf{q} \cdot \mathbf{l}) \hat{B}(\mathbf{q}j,t)$$

Energy of phonon depends on **q** and polarization

LToragistværfisærhmodele

FCC structure

Г

5.0

Δ

Phonon intensities

More complicated structures

Optical phonon

Spin excitations

• Spin excitations

- Spin waves in ordered magnets
- Paramagnetic & quantum spin fluctuations
- Crystal-field & spin-orbit excitations

• Magnetic inelastic scattering can tell us about

- Exchange interactions
- Single-ion and exchange anisotropy (determine Hamiltonian)
- Phase transitions & critical phenomena
- Quantum critical scaling of magnetic fluctuations
- Other electronic energy scales (eg. CF & SO)
- Interactions (eg. spin-phonon coupling)

Spin waves

Perring et al., Phys. Rev. Lett. 77, 711 (1996).

Antiferromagnetic 80 [[20]] [00**5**] [٤00] [½0ζ] [505] 70 MAGNON ENERGY (meV) 60 50 Tm FeO₃ 40 =102.5°K 07 ± 0.58° K 30 =-1.88±0.23°K 20 =-24.51±0.14°K J'= 0.0°K 10 $[0,0,\frac{1}{2}]$ [0,0,0] $[\frac{1}{2},0,0]$ $[\frac{1}{2},0,\frac{1}{2}]$ [0,0,0] $\left[\frac{1}{2}, 0, \frac{1}{2}\right]$

Shapiro et al., Phys. Rev. B 10, 2014 (1974).

McQueeney et al., Phys. Rev. Lett. 99, 246401 (2007).

Scattering experiments

cMaster

University

2 3 4 5 6

Instrument and sample (powder or single-crystal) determine how (\mathbf{Q}, ω) space is sampled

0

0

2

3 4 5 6

0 1

Momentum Transfer (Å⁻¹)

Brockhouse's Triple Axis Spectrometer

 $|\mathbf{k}_i| = 2 \pi / \lambda_i$

Momentum Transfer:

 $\mathbf{Q} = \mathbf{k}_{i} - \mathbf{k}_{f}$

Two Axis Spectrometer:

- 3-axis with analyser removed
- Powder diffractometer
- Small angle diffractometer
- Reflectometers

Diffractometers often employ working assumption that all scattering is *elastic*.

Soller Slits: Collimators

Define beam direction to +/- 0.5, 0.75 etc. degrees

Single crystal monochromators:

Bragg reflection and harmonic contamination

Two different ways of performing constant-Q scans

Mapping Momentum – Energy (Q-E) space

Origin of reciprocal space;

Remains fixed for any sample rotation

MOMENTUM, Q

Elementary Excitations in Solids

• Lattice Vibrations (Phonons)

• Spin Fluctuations (Magnons)

Energy vs Momentum

• Forces which bind atoms together in solids

Constant Q, Constant E 3-axis technique allow us to Put Q-Energy space on a grid, And scan through as we wish

Map out elementary excitations In Q-energy space (dispersion Surface)

Samples

- Samples need to be BIG
 - ~ gram or cc
 - Counting times are long (mins/pt)
- Sample rotation
- Sample tilt

Co-aligned CaFe₂As₂ crystals

Monochromators

• Selects the incident wavevector

- Reflectivity
- focusing
- high-order contamination
 eg. λ/2 PG(004)

Mono	d(hkl)	uses
PG(002)	3.353	General
Be(002)	1.790	High k _i
Si(111)	3.135	Νο λ/2

Detectors

Gas Detectors

- $n + {}^{3}He \rightarrow {}^{3}H + p + 0.764 \text{ MeV}$
- Ionization of gas
- e⁻ drift to high voltage anode
- High efficiency
- Beam monitors
- Low efficiency detectors for measuring beam flux

<u>Resolution</u>

- Resolution ellipsoid
 - Beam divergences
 - Collimations/distances
 - Crystal mosaics/sizes/angles

Resolution convolutions

 $I(\mathbf{Q}_0,\omega_0) = \int S(\mathbf{Q}_0,\omega_0) R(\mathbf{Q}-\mathbf{Q}_0,\omega-\omega_0) d\mathbf{Q} d\omega$

Resolution focusing

- Optimizing peak intensity
- Match slope of resolution to dispersion

Neutrons have *mass* so higher energy means faster – lower energy means slower

We can measure a neutron's energy, wavelength by measuring its speed

Time-of-flight methods

Spallation neutron source

Pharos – Lujan Center

 Effectively utilizes time structure of pulsed neutron groups

$$t = \frac{d}{v} = \left(\frac{m}{h}d\right)\lambda$$

A single (disk) chopper pulses the neutron beam. A second chopper selects neutrons within a narrow range of speeds.

Counter-rotating choppers (close together), with speed \bullet , behave like single choppers with speed 2 \bullet . They can also permit a choice of pulse widths.

Additional choppers remove "contaminant" wavelengths and reduce the pulse frequency at the sample position.

The DCS has seven choppers, 4 of which have 3 "slots"

Disk 4B

Fermi Choppers

- Body radius ~ 5 cm
- Curved absorbing slats
 - B or Gd coated
 - ~mm slit size
- f = 600 Hz (max)
- Acts like shutter, $\Delta t \simeq \mu s$

Figure 1. ISIS MAPS chopper and slit package assembly - exploded view

T-zero chopper

- Background suppression
- Blocks fast neutron flash

NXS School

Position sensitive detectors

- ³He tubes (usu. 1 meter)
- Charge division
- Position resolution ~ cm
- Time resolution ~ 10 ns

McMaster

University

MAPS detector bank

NXS School

Sample environment

- Temperature, field, pressure
- Heavy duty for large sample environment
 - CCR
 - He cryostats
 - SC magnets
 - ...
- Can be machined from Al

 neutron transparent
 relatively easy to work with

NXS School

Guides

- Transport beam over long distances
- Background reduction
- Total external reflection
 - Ni coated glass
 - Ni/Ti multilayers (supermirror)

Size matters

- Length = resolution
 - Instruments ~ 20 40 m long
 - E-resolution ~ 2-4% E_i

SEQUOIA detector vacuum vessel

- More detectors
 - SEQUOIA 1600 tubes, 144000 pixels
 - Solid angle coverage 1.6 steradians
- Huge data sets
- 0.1 1 GB

Kinematic limitations

- Many combinations of k_i,k_f for same Q,ω
 - Only certain configurations are used (eg. E_f-fixed)
- Cannot "close triangle" for certain Q,ω due to kinematics

Minimum accessible Q

Data visualization

Energy (meV)

20

- Large, complex data from spallation sources
- Measure $S(\mathbf{Q}, \omega) 4D$ function ٠

Field-induced order in the Pyrochlore Yb2Ti2O7:

Weak magnetic field // [110] induces LRO

appearance of long-lived spin waves at low T and moderate H

References

General neutron scattering

G. Squires, "Intro to theory of thermal neutron scattering", Dover, 1978.
S. Lovesey, "Theory of neutron scattering from condensed matter", Oxford, 1984.
R. Pynn, http://www.mrl.ucsb.edu/~pynn/.

Polarized neutron scattering

Moon, Koehler, Riste, Phys. Rev 181, 920 (1969).

Triple-axis techniques

Shirane, Shapiro, Tranquada, "Neutron scattering with a triple-axis spectrometer", Cambridge, 2002.

Time-of-flight techniques

B. Fultz, http://www.cacr.caltech.edu/projects/danse/ARCS_Book_16x.pdf